Showing posts with label Ward-Leonard control. Show all posts
Showing posts with label Ward-Leonard control. Show all posts

22/12/2021

Electrical deck auxiliaries on ships

These auxiliaries, in the main, comprise cargo winches (which may include warping as a subsidiary duty), cranes, capstans, warping winches, windlasses and hatch-cover winches. Except for cranes, each of these may sometimes be used for duties other than those for which they are primarily intended. The systems of control as between these various applications bear a similarity but with variations to suit the operating conditions. It will be convenient to deal with them under their different headings, but there are divergencies between the methods favoured by different makers and descriptions will therefore be confined to representative schemes.

Electrical deck auxiliaries on ships

Electro-hydraulic winches do not call for special mention as they use a continuous running motor, which can be either a.c. or d.c. They can be operated either singly or in groups from one pump. Many electrical deck auxiliary schemes make use of contactors for control purposes and where these are of such size and numbers as to warrant it they can be accommodated in a separate contactor deckhouse instead of in the winch assembly. This increases the amount of cabling but on the other hand it economises deck space in the vicinity of the winch, making for cleaner lines and unobstructed viewing by the operator. It also facilitates maintenance work which in any case is not always opportune to carry out when the ship is in port and when the winches are in use. While at sea maintenance can be carried out under protection from the elements. In every winch, etc., in which the load is lowered while the motor is mechanically coupled such as in systems employing power lowering it is essential to prevent the load taking charge and lowering at a speed which will damage the motor armature. To safeguard against this contingency centrifugal brakes are provided in some cases and they are so set as to enable heavy loads to be lowered with an assurance that the safe speed cannot be exceeded. Provision must also be made to stop the load running back if the power supply should fail or the overload relay operate and in this event the winch, etc., must not restart when power is restored unless the controller has been returned to the starting point, usually the "off " position.

21/12/2021

Variable Voltage Control. Ward-Leonard control

Where fine control of both hoisting and lowering speed is required either booster control or a modified form of Ward-Leonard control is suitable and footbrakes are not essential. 

A magnetic brake provides against power failure or when returning the controller to off. Generally speaking for straightforward Ward-Leonard schemes the motor for the generator set can be either a.c. or d.c. and as the set runs continuously and in one direction only it is started in the conventional manner. If the supply is a.c. the exciter would be replaced by a static rectifier.

Under these Regulations vessels of 200 gross tons or less must have two lines of hawsers, one at the bow and the other at the stern quarter, each leading through a closed chock. Larger vessels must have at least four lines so arranged that they can be used on either side of the vessel. Two must lead from the bow and two from the stern quarters and not from the extreme bow or stern. For vessels between 200 and 300 gross tons the windlass forward and the capstan aft may be used for the two lines ahead but those leading aft must run from the main drum of power-driven winches and not from capstans. For all larger vessels all four lines must be power-operated and run from the main drum of power-driven winches and not from capstans.